Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Rubidium bis(trifluoromethanesulfonyl)imidate dioxane disolvate

Lixin Xue, Clifford W. Padgett, Darryl D. DesMarteau* and William T. Pennington*
Clemson University, Chemistry Department, H.L. Hunter Research Laboratories, Clemson, SC 29634-0973, USA
Correspondence e-mail: billp@clemson.edu

Received 17 February 2004
Accepted 11 March 2004
Online 9 April 2004

The bis(trifluoromethanesulfonyl)imidate anion crystallizes with Rb as the title dioxane $1: 2$ solvate, $\mathrm{Rb}^{+} \cdot \mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{~N}$ $\mathrm{SO}_{2} \mathrm{CF}_{3}{ }^{-} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, with the anion in a transoid conformation, as opposed to the cisoid form typically seen when there are significant cation-anion interactions. The Rb^{I} cation is eightcoordinate, interacting with one anion in a chelating fashion and with two other anions through the remaining sulfonyl O atoms. The latter interactions link ion pairs through the formation of $\mathrm{Rb}_{2} \mathrm{O}_{2}$ dimers about inversion centers at $\left(0, \frac{1}{2}, 0\right)$ and $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, forming extended columns which run parallel to the a axis of the unit cell. Rb -dioxane bridges crosslink these salt columns in the (010), (001) and (011) directions, resulting in a three-dimensional network solid. One dioxane solvent molecule is disordered over two half-occupancy sites.

Comment

Salts of bis(perfluoroalkanesulfonyl)imides, particularly the trifluoromethyl derivatives, have been found to serve as solutes for polymer electrolytes, leading to dramatically improved performance (Armand et al., 1990; Nowinski et al., 1994). This behavior is due in part to the remarkable acidity of these compounds (Koppel et al., 1994; DesMarteau, 1995). The resonance stabilization of the conjugate base anions of the acids results from extensive delocalization of charge over the $\mathrm{SO}_{2}-\mathrm{N}-\mathrm{SO}_{2}$ framework. With cations offering no strong interactions, these anions have been found to give salts with good potential as ionic liquids (Golding et al., 1998). On the other hand, with metal cations they serve as multidentate ligands that bond to multiple metal centers to maximize electrostatic interaction (DesMarteau et al., 1989, 1992; Xue et al., 1997, 2002). These interactions result in the formation of ionic hydrophilic and perfluoroalkyl hydrophobic regions, which typically associate into layers consisting of an ionic core with perfluoroalkyl surfaces. This fluorine segregation effect (Dautel et al., 2002; Wolff et al., 1999) may provide a feasible
driving force for the directed design of new solid-state materials.

As we (Xue et al., 1997, 2002) and others (Zak \& Ruzicka, 1998) have observed, bis(perfluoroalkanesulfonyl)imides can exist in two different conformations as the anion, either in a transoid form, with the perfluoroalkyl groups lying on opposite sides of the $\mathrm{S}-\mathrm{N}-\mathrm{S}$ plane ($\mathrm{C}-\mathrm{S} \cdots \mathrm{S}-\mathrm{C}$ dihedral angle of $\sim 180^{\circ}$), or in a cisoid form, with the perfluoroalkyl groups lying on the same side of the $\mathrm{S}-\mathrm{N}-\mathrm{S}$ plane ($\mathrm{C}-\mathrm{S} \cdots \mathrm{S}-\mathrm{C}$ dihedral angle of $\sim 0^{\circ}$). It has been our general experience that the transoid form is favored when there are only weak cationanion interactions, but that the cisoid form is often found when the anion is chelated to a metal center. In a recent contribution (Xue et al., 2002), the anion was found in the cisoid form in anhydrous and hydrated salts of all the alkali metal cations except rubidium, which was determined as the monohydrate salt. We report here the structure of the title dioxane solvate, (I), of the rubidium salt and, like the monohydrate form, the anion has a transoid conformation [C-S \cdots S-C dihedral angle of $-147.2(4)^{\circ}$].

(I)

The distances and angles within the anion of (I) agree well with those of other salts (DesMarteau et al., 1989, 1992; Xue et al., 1997, 2002; Haas et al., 1996; Mikami et al., 1998; Polyakov

Figure 1
The molecular structure of (I) and four bridging dioxane molecules. Only one component of the disordered dioxane molecule (atoms O8, C 9 and C 10) is shown and H atoms have been omitted. Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: $(A)-x, 1-y$, $-z ;(B) 1-x, 1-y,-z ;(C) 1-x, 2-y,-z ;(D) 1-x, 1-y, 1-z ;$ (E) $1-x, 2-y, 1-z ;(F) 2-x, 2-y, 1-z$.]
et al., 1999). The cation is eight-coordinate, with $\mathrm{Rb} \cdots \mathrm{O}$ contacts ranging from 2.897 (4) to 3.063 (4) Å. These contacts are also within previously reported ranges for rubidium salts of this (Xue et al., 2002; Zak \& Ruzicka, 1998) and similar anions (Juschke et al., 1997) and for rubidium dioxane solvates (Bryan et al., 1998, 1999; Neander et al., 2000; Edelmann et al., 1992).

Figure 2
A packing diagram for (I), viewed down the a axis. S atoms are shown as 50% probability displacement ellipsoids, Rb^{I} ions as large open circles, N atoms as solid circles, O atoms as partially shaded circles and C atoms as small open circles. H atoms are not shown.

The cation and anion of (I) sit upon general positions within the cell. The anion interacts with the cation through atoms O1 and O 3 to form a chelate. Additional contacts through atom O 2 about an inversion center at $\left(0, \frac{1}{2}, 0\right)$ and through atom O 4 about $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ link ion pairs into columns running up the a axis. Each of the dioxane molecules is situated about an inversion center and bridges salt columns in the (010), (001) and (011) directions, to form a three-dimensional network solid.

Reasons for the observed preference of the transoid conformation of the anion with Rb are not yet clear, but investigation into this interesting behavior will continue.

Experimental

The title compound was synthesized by neutralization of a methanol solution of bis(trifluoromethanesulfonyl)imide in acid form with rubidium carbonate, followed by recrystallization from dioxane.

Crystal data	
$\mathrm{Rb}^{+} \cdot \mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}-\cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	$Z=2$
$M_{r}=541.83$	$D_{x}=1.768 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $\mathrm{K} \alpha$ radiation
$a=9.732(4) \AA$	Cell parameters from 50
$b=11.310(4) \AA$	reflections
$c=11.638(4) \AA$	$\theta=11.7-17.8^{\circ}$
$\alpha=94.61(3)^{\circ}$	$\mu=2.73 \mathrm{~mm}^{-1}$
$\beta=113.08(3)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=115.24(3)^{\circ}$	Parallelepiped, colorless
$V=1017.7(8) \AA^{\circ}$	$0.41 \times 0.37 \times 0.26 \mathrm{~mm}$

Crystal data

metal-organic compounds

Dautel, O. J., Fourmigue, M. \& Faulques, E. (2002). CrystEngComm, 4, 249 251.

DesMarteau, D. D. (1995). J. Fluorine Chem. 72, 203-208
DesMarteau, D. D., Zhu, S., Pennington, W. T., Gotoh, Y., Witz, M., Zuberi, S. \& Singh, S. (1989). J. Fluorine Chem. 45, 24.
DesMarteau, D. D., Zuberi, S., Pennington, W. T. \& Randolph, B. B. (1992). Eur. J. Solid State Inorg. Chem. 29, 777-789.
Edelmann, F. T., Pauer, F., Wedler, M. \& Stalke, D. (1992). Inorg. Chem. 31, 4143-4146.
Golding, J. J., MacFarlane, D. R., Spiccia, L., Forsyth, M., Skelton, B. W. \& White, A. H. (1998). Chem. Commun. pp. 1593-1594.
Haas, A., Klare, C., Betz, P., Bruckmann, J., Kruger, C., Tsay, Y.-H. \& Aubke, F. (1996). Inorg. Chem. 35, 1918-1925.

Juschke, R., Henkel, G. \& Sartori, P. (1997). Z. Naturforsch. Teil B, 52, 359366.

Koppel, I. A., Taft, R. W., Anvia, F., Zhu, S.-Z., Hu, L.-Q., Sung, K.-S., DesMarteau, D. D., Yagupolskii, L. M., Yagupolskii, Y. L., Ignat'ev, N. V., Kondratenko, N. V., Volkonskii, A. Y., Vlasov, V. M., Notario, R. \& Maria, P.-C. (1994). J. Am. Chem. Soc. 116, 3047-3057.

Mikami, K., Kotera, O., Motoyama, Y. \& Tanaka, M. (1998). Inorg. Chem. Comтии. 1, 10-11.
Neander, S., Behrens, U. \& Olbrich, F. (2000). J. Organomet. Chem. 604, 59-67.
Nowinski, J. L., Lightfoot, P. \& Bruce, P. G. (1994). J. Mater. Chem. 4, 15791580.

Polyakov, O. G., Ivanova, S. M., Gaudinski, C. M., Miller, S. M., Anderson, O. P. \& Strauss, S. H. (1999). Organometallics, 18, 3769-3771.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1989). P3 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wolff, J. J., Gredel, F., Oeser, T., Irngartinger, H. \& Pritzkow, H. (1999). Chem Eur. J. 5, 29-38.
Xue, L., DesMarteau, D. D. \& Pennington, W. T. (1997). Angew. Chem. Int. Ed. Engl. 36, 1333-1335.
Xue, L., Padgett, C. W., DesMarteau, D. D. \& Pennington, W. T. (2002). Solid State Sci. 4, 1535-1545.
Zak, Z. \& Ruzicka, A. (1998). Z. Kristallogr. 213, 217-222.

